Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Metabol Open ; 20: 100263, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38077241

RESUMO

Background: Since there are limited studies on the associations between glycemic variability (GV) and sleep quality or physical activity in subjects without diabetes, we evaluated the associations between GV, as assessed by continuous glucose monitoring (CGM), and both sleep quality and daily steps using wearable devices in healthy individuals. Methods: Forty participants without diabetes were monitored by both an intermittently scanned CGM and a smartwatch-type activity tracker for 2 weeks. The standard deviation (SD) and coefficient of variation (CV) of glucose were evaluated as indices of GV. The activity tracker was used to calculate each participant's average step count per day. We also calculated sleep duration, sleep efficiency, and sleep latency based on data from the activity tracker. Spearman's correlation coefficient was used to assess the association between GV and sleep indices or daily steps. For each participant, periods were divided into quartiles according to step counts throughout the day. We compared mean parameter differences between the periods of lowest quartile and highest quartile (lower 25% and upper 25%). Results: SD glucose was significantly positively correlated with sleep latency (R = 0.23, P < 0.05). There were no significant correlations among other indices in GV and sleep quality (P > 0.05). SD glucose and CV glucose levels in the upper 25% period of daily steps were lower than those in the lower 25% period in each participant (both, P < 0.01). Conclusion: In subjects without diabetes, GV evaluated by intermittently scanned CGM was positively associated with the time to fall asleep. Furthermore, GV in the days of larger daily steps was decreased compared to the days of smaller daily steps in each participant.

2.
PLoS One ; 18(10): e0291923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37792730

RESUMO

BACKGROUND: There are limited data about the association between body mass index (BMI), glycemic variability (GV), and life-related factors in healthy nondiabetic adults. METHODS: This cross-sectional study was carried out within our ethics committee-approved study called "Exploring the impact of nutrition advice on blood sugar and psychological status using continuous glucose monitoring (CGM) and wearable devices". Prediabetes was defined by the HbA1c level of 5.7-6.4% and /or fasting glucose level of 100-125 mg/dL. Glucose levels and daily steps were measured for 40 participants using Free Style Libre and Fitbit Inspire 2 under normal conditions for 14 days. Dietary intakes and eating behaviors were assessed using a brief-type self-administered dietary history questionnaire and a modified questionnaire from the Obesity Guidelines. RESULTS: All indices of GV were higher in the prediabetes group than in the healthy group, but a significant difference was observed only in mean amplitude of glycemic excursions (MAGE). In the multivariate analysis, only the presence of prediabetes showed a significant association with the risk of higher than median MAGE (Odds, 6.786; 95% CI, 1.596-28.858; P = 0.010). Additionally, the underweight (BMI < 18.5) group had significantly higher value in standard deviation (23.7 ± 3.5 vs 19.8 ± 3.7 mg/dL, P = 0.038) and coefficient variability (22.6 ± 4.6 vs 18.4 ± 3.2%, P = 0.015), compared to the normal group. This GV can be partially attributed to irregularity of eating habits. On the contrary, the overweight (BMI ≥ 25) group had the longest time above the 140 or 180 mg/dL range, which may be due to eating style and taking fewer steps (6394 ± 2337 vs 9749 ± 2408 steps, P = 0.013). CONCLUSIONS: Concurrent CGM with diet and activity monitoring could reduce postprandial hyperglycemia through assessment of diet and daily activity, especially in non- normal weight individuals.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Adulto , Humanos , Glicemia/análise , Índice de Massa Corporal , Automonitorização da Glicemia , Estudos Transversais , Hemoglobinas Glicadas , Estilo de Vida
3.
Stem Cell Reports ; 18(6): 1274-1283, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37315521

RESUMO

Cardiac transcription factors (TFs) directly reprogram fibroblasts into induced cardiomyocytes (iCMs), where MEF2C acts as a pioneer factor with GATA4 and TBX5 (GT). However, the generation of functional and mature iCMs is inefficient, and the molecular mechanisms underlying this process remain largely unknown. Here, we found that the overexpression of transcriptionally activated MEF2C via fusion of the powerful MYOD transactivation domain combined with GT increased the generation of beating iCMs by 30-fold. Activated MEF2C with GT generated iCMs that were transcriptionally, structurally, and functionally more mature than those generated by native MEF2C with GT. Mechanistically, activated MEF2C recruited p300 and multiple cardiogenic TFs to cardiac loci to induce chromatin remodeling. In contrast, p300 inhibition suppressed cardiac gene expression, inhibited iCM maturation, and decreased the beating iCM numbers. Splicing isoforms of MEF2C with similar transcriptional activities did not promote functional iCM generation. Thus, MEF2C/p300-mediated epigenetic remodeling promotes iCM maturation.


Assuntos
Montagem e Desmontagem da Cromatina , Fatores de Transcrição MEF2 , Miócitos Cardíacos , Fatores de Transcrição de p300-CBP , Epigênese Genética , Epigenômica , Fibroblastos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição de p300-CBP/genética
4.
Circulation ; 147(3): 223-238, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36503256

RESUMO

BACKGROUND: Because adult cardiomyocytes have little regenerative capacity, resident cardiac fibroblasts (CFs) synthesize extracellular matrix after myocardial infarction (MI) to form fibrosis, leading to cardiac dysfunction and heart failure. Therapies that can regenerate the myocardium and reverse fibrosis in chronic MI are lacking. The overexpression of cardiac transcription factors, including Mef2c/Gata4/Tbx5/Hand2 (MGTH), can directly reprogram CFs into induced cardiomyocytes (iCMs) and improve cardiac function under acute MI. However, the ability of in vivo cardiac reprogramming to repair chronic MI with established scars is undetermined. METHODS: We generated a novel Tcf21iCre/reporter/MGTH2A transgenic mouse system in which tamoxifen treatment could induce both MGTH and reporter expression in the resident CFs for cardiac reprogramming and fibroblast lineage tracing. We first tested the efficacy of this transgenic system in vitro and in vivo for acute MI. Next, we analyzed in vivo cardiac reprogramming and fusion events under chronic MI using Tcf21iCre/Tomato/MGTH2A and Tcf21iCre/mTmG/MGTH2A mice, respectively. Microarray and single-cell RNA sequencing were performed to determine the mechanism of cardiac repair by in vivo reprogramming. RESULTS: We confirmed the efficacy of transgenic in vitro and in vivo cardiac reprogramming for acute MI. In chronic MI, in vivo cardiac reprogramming converted ≈2% of resident CFs into iCMs, in which a majority of iCMs were generated by means of bona fide cardiac reprogramming rather than by fusion with cardiomyocytes. Cardiac reprogramming significantly improved myocardial contraction and reduced fibrosis in chronic MI. Microarray analyses revealed that the overexpression of MGTH activated cardiac program and concomitantly suppressed fibroblast and inflammatory signatures in chronic MI. Single-cell RNA sequencing demonstrated that resident CFs consisted of 7 subclusters, in which the profibrotic CF population increased under chronic MI. Cardiac reprogramming suppressed fibroblastic gene expression in chronic MI by means of conversion of profibrotic CFs to a quiescent antifibrotic state. MGTH overexpression induced antifibrotic effects partly by suppression of Meox1, a central regulator of fibroblast activation. CONCLUSIONS: These results demonstrate that cardiac reprogramming could repair chronic MI by means of myocardial regeneration and reduction of fibrosis. These findings present opportunities for the development of new therapies for chronic MI and heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fibrose , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Fibroblastos/metabolismo , Reprogramação Celular
5.
Front Neurosci ; 16: 1013712, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408384

RESUMO

Substantial emotional or physical stress may lead to an imbalance in the brain, resulting in stress cardiomyopathy (SC) and transient left ventricular (LV) apical ballooning. Even though these conditions are severe, their precise underlying mechanisms remain unclear. Appropriate animal models are needed to elucidate the precise mechanisms. In this study, we established a new animal model of epilepsy-induced SC. The SC model showed an increased expression of the acute phase reaction protein, c-Fos, in the paraventricular hypothalamic nucleus (PVN), which is the sympathetic nerve center of the brain. Furthermore, we observed a significant upregulation of neuropeptide Y (NPY) expression in the left stellate ganglion (SG) and cardiac sympathetic nerves. NPY showed neither positive nor negative inotropic and chronotropic effects. On the contrary, NPY could interrupt ß-adrenergic signaling in cardiomyocytes when exposure to NPY precedes exposure to noradrenaline. Moreover, its elimination in the left SG via siRNA treatment tended to reduce the incidence of SC. Thus, our results indicated that upstream sympathetic activation induced significant upregulation of NPY in the left SG and cardiac sympathetic nerves, resulting in cardiac dysfunctions like SC.

6.
Nat Commun ; 13(1): 5409, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109509

RESUMO

Failure of the right ventricle plays a critical role in any type of heart failure. However, the mechanism remains unclear, and there is no specific therapy. Here, we show that the right ventricle predominantly expresses alternative complement pathway-related genes, including Cfd and C3aR1. Complement 3 (C3)-knockout attenuates right ventricular dysfunction and fibrosis in a mouse model of right ventricular failure. C3a is produced from C3 by the C3 convertase complex, which includes the essential component complement factor D (Cfd). Cfd-knockout mice also show attenuation of right ventricular failure. Moreover, the plasma concentration of CFD correlates with the severity of right ventricular failure in patients with chronic right ventricular failure. A C3a receptor (C3aR) antagonist dramatically improves right ventricular dysfunction in mice. In summary, we demonstrate the crucial role of the C3-Cfd-C3aR axis in right ventricular failure and highlight potential therapeutic targets for right ventricular failure.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Direita , Animais , Complemento C3/genética , Convertases de Complemento C3-C5 , Fator D do Complemento , Insuficiência Cardíaca/genética , Camundongos , Camundongos Knockout , Remodelação Ventricular
7.
CEN Case Rep ; 11(1): 146-153, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34529243

RESUMO

Fabry disease (FD) is an X-linked genetic lysosomal disorder caused by alpha-galactosidase A (GLA) deficiency. Multiple myeloma (MM) predominately affects older adults, which ranks as the second commonest hematological malignancy. Their overlap has rarely been reported. We present a case of the coexistence of FD and MM in a patient. We report the case of a 68-year-old woman who was referred to our hospital for the evaluation of thoracic spine tumor with bone destruction. On admission, her serum creatinine (Cr) level was elevated to 12.70 mg/dL from the baseline value of 0.91 mg/dL. Bone marrow aspiration revealed MM. Renal biopsy showed myeloma cast nephropathy, which was the primary cause of acute kidney injury. Renal pathology also showed podocyte swelling and tubule myeloid bodies in a mosaic pattern compatible with female FD. Consequently, the patient was diagnosed as FD based on the germ line mutation in GLA. The patient was treated with bortezomib and dexamethasone therapy, which significantly improved the renal function. This is the second case demonstrating a potential pathogenic relationship between FD and MM. Since FD is one of the few genetic diseases for which there are therapeutic agents with fewer side effects, diagnostic value of FD is high. If an MM patient has multiple organ abnormalities or any familial history, the physician should suspect FD.


Assuntos
Doença de Fabry , Nefropatias , Mieloma Múltiplo , Idoso , Bortezomib/uso terapêutico , Doença de Fabry/complicações , Doença de Fabry/diagnóstico , Doença de Fabry/tratamento farmacológico , Feminino , Humanos , Rim/patologia , Nefropatias/patologia , Masculino , Mieloma Múltiplo/complicações , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/tratamento farmacológico
8.
Front Physiol ; 12: 606931, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733168

RESUMO

Thyroid hormones (THs) are synthesized in the thyroid gland, and they circulate in the blood to regulate cells, tissues, and organs in the body. In particular, they exert several effects on the cardiovascular system. It is well known that THs raise the heart rate and cardiac contractility, improve the systolic and diastolic function of the heart, and decrease systemic vascular resistance. In the past 30 years, some researchers have studied the molecular pathways that mediate the role of TH in the cardiovascular system, to better understand its mechanisms of action. Two types of mechanisms, which are genomic and non-genomic pathways, underlie the effects of THs on cardiomyocytes. In this review, we summarize the current knowledge of the action of THs in the cardiac function, the clinical manifestation and parameters of their hemodynamics, and treatment principles for patients with hyperthyroid- or hypothyroid-associated heart disease. We also describe the cardiovascular drugs that induce thyroid dysfunction and explain the mechanism underlying the thyroid toxicity of amiodarone, which is considered the most effective antiarrhythmic agent. Finally, we discuss the recent reports on the involvement of thyroid hormones in the regulation of myocardial regeneration and metabolism in the adult heart.

9.
Inflamm Regen ; 41(1): 20, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34193320

RESUMO

Japan faces an increasing incidence of heart disease, owing to a shift towards a westernized lifestyle and an aging demographic. In cases where conventional interventions are not appropriate, regenerative medicine offers a promising therapeutic option. However, the use of stem cells has limitations, and therefore, "direct cardiac reprogramming" is emerging as an alternative treatment. Myocardial regeneration transdifferentiates cardiac fibroblasts into cardiomyocytes in situ.Three cardiogenic transcription factors: Gata4, Mef2c, and Tbx5 (GMT) can induce direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs), in mice. However, in humans, additional factors, such as Mesp1 and Myocd, are required. Inflammation and immune responses hinder the reprogramming process in mice, and epigenetic modifiers such as TET1 are involved in direct cardiac reprogramming in humans. The three main approaches to improving reprogramming efficiency are (1) improving direct cardiac reprogramming factors, (2) improving cell culture conditions, and (3) regulating epigenetic factors. miR-133 is a potential candidate for the first approach. For the second approach, inhibitors of TGF-ß and Wnt signals, Akt1 overexpression, Notch signaling pathway inhibitors, such as DAPT ((S)-tert-butyl 2-((S)-2-(2-(3,5-difluorophenyl) acetamido) propanamido)-2-phenylacetate), fibroblast growth factor (FGF)-2, FGF-10, and vascular endothelial growth factor (VEGF: FFV) can influence reprogramming. Reducing the expression of Bmi1, which regulates the mono-ubiquitination of histone H2A, alters histone modification, and subsequently the reprogramming efficiency, in the third approach. In addition, diclofenac, a non-steroidal anti-inflammatory drug, and high level of Mef2c overexpression could improve direct cardiac reprogramming.Direct cardiac reprogramming needs improvement if it is to be used in humans, and the molecular mechanisms involved remain largely elusive. Further advances in cardiac reprogramming research are needed to bring us closer to cardiac regenerative therapy.

11.
Stem Cell Reports ; 15(3): 612-628, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32857980

RESUMO

Direct cardiac reprogramming holds great potential for regenerative medicine. However, it remains inefficient, and induced cardiomyocytes (iCMs) generated in vitro are less mature than those in vivo, suggesting that undefined extrinsic factors may regulate cardiac reprogramming. Previous in vitro studies mainly used hard polystyrene dishes, yet the effect of substrate rigidity on cardiac reprogramming remains unclear. Thus, we developed a Matrigel-based hydrogel culture system to determine the roles of matrix stiffness and mechanotransduction in cardiac reprogramming. We found that soft matrix comparable with native myocardium promoted the efficiency and quality of cardiac reprogramming. Mechanistically, soft matrix enhanced cardiac reprogramming via inhibition of integrin, Rho/ROCK, actomyosin, and YAP/TAZ signaling and suppression of fibroblast programs, which were activated on rigid substrates. Soft substrate further enhanced cardiac reprogramming with Sendai virus vectors via YAP/TAZ suppression, increasing the reprogramming efficiency up to ∼15%. Thus, mechanotransduction could provide new targets for improving cardiac reprogramming.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Reprogramação Celular , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Actomiosina/metabolismo , Animais , Vetores Genéticos/metabolismo , Integrinas/metabolismo , Camundongos Transgênicos , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miosina Tipo II/metabolismo , Vírus Sendai/genética , Transdução de Sinais , Proteínas de Sinalização YAP , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
12.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155842

RESUMO

Skeletal muscle comprises 30-40% of the weight of a healthy human body and is required for voluntary movements in humans. Mature skeletal muscle is formed by multinuclear cells, which are called myofibers. Formation of myofibers depends on the proliferation, differentiation, and fusion of muscle progenitor cells during development and after injury. Muscle progenitor cells are derived from muscle satellite (stem) cells (MuSCs), which reside on the surface of the myofiber but beneath the basement membrane. MuSCs play a central role in postnatal maintenance, growth, repair, and regeneration of skeletal muscle. In sedentary adult muscle, MuSCs are mitotically quiescent, but are promptly activated in response to muscle injury. Physiological and chronological aging induces MuSC aging, leading to an impaired regenerative capability. Importantly, in pathological situations, repetitive muscle injury induces early impairment of MuSCs due to stem cell aging and leads to early impairment of regeneration ability. In this review, we discuss (1) the role of MuSCs in muscle regeneration, (2) stem cell aging under physiological and pathological conditions, and (3) prospects related to clinical applications of controlling MuSCs.


Assuntos
Envelhecimento/fisiologia , Senescência Celular , Desenvolvimento Muscular , Músculo Esquelético/citologia , Doenças Musculares/terapia , Regeneração , Células-Tronco/citologia , Animais , Diferenciação Celular , Humanos , Músculo Esquelético/fisiologia , Doenças Musculares/fisiopatologia , Células-Tronco/fisiologia
13.
CEN Case Rep ; 9(1): 24-29, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31542871

RESUMO

Fabry disease (FD) is an X-linked inherited glycosphingolipid metabolism disorder, therefore, heterozygous female FD patients display highly variable clinical symptoms, disease severity, and pathological findings. This makes it very challenging to diagnosing female patients with FD. A 69-year-old Japanese female was introduced to the nephrologist for the evaluation of proteinuria. A renal biopsy was performed. Although the light microscopic examinations revealed that most of the glomeruli showed minor glomerular abnormalities, however, vacuolation was apparently found in the tubular epithelial cells. Immunofluorescence staining for globotriaosylceramide was positively detected in some podocytes and distal tubular epithelial cells. In addition, myelin-like structure (zebra body) was detected by electron microscopy. Pathological findings were most consistent with FD. Consequently, biochemical and genetic analysis confirmed the diagnosis of female FD. Enzyme replacement therapy was performed in conjunction with renin-angiotensin aldosterone system inhibitors and beta-blockers. The patient's family members received the analysis, and the same DNA missense mutation was detected in the patient's grandson. The enzyme replacement therapy was introduced to the grandson. The present case showed that renal biopsy can contribute towards a correct diagnosis for FD. Particularly, in female FD patients, careful examination of pathological changes is essential, for example, vacuolation of any type of renal cells may be a clue for the diagnosis.


Assuntos
Biópsia/métodos , Doença de Fabry/diagnóstico , Rim/patologia , Idoso , Povo Asiático/genética , Terapia de Reposição de Enzimas/métodos , Doença de Fabry/genética , Doença de Fabry/terapia , Feminino , Heterozigoto , Humanos , Rim/ultraestrutura , Glomérulos Renais/patologia , Microscopia Eletrônica/métodos , Mutação de Sentido Incorreto , Podócitos/patologia , Proteinúria/diagnóstico , Proteinúria/etiologia , Índice de Gravidade de Doença , Triexosilceramidas/metabolismo
14.
Chem Senses ; 44(7): 523-533, 2019 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-31346612

RESUMO

Previously, we have detected the expression of 2 lipocalin genes (lp1 and lp2) in the olfactory epithelium of the Japanese newt Cynops pyrrhogaster. Recombinant proteins of these genes (Cp-Lip1 and Cp-Lip2, respectively) exhibited high affinities to various odorants, suggesting that they work like the odorant-binding proteins (OBPs). However, the physiological functions of OBP generally remain inconclusive. Here, we examined the effect of Cp-Lip1 on the electrophysiological responses of newt olfactory receptor cells. We observed that the electro-olfactogram induced by the vapor of an odorant with high affinity to Cp-Lip1 appeared to increase in amplitude when a tiny drop of Cp-Lip1 solution was dispersed over the olfactory epithelium. However, the analysis was difficult because of possible interference by intrinsic components in the nasal mucus. We subsequently adopted a mucus-free condition by using suction electrode recordings from isolated olfactory cells, in which impulses were generated by puffs of odorant solution. When various concentration (0-5 µM) of Cp-Lip1 was mixed with the stimulus solution of odorants highly affinitive to Cp-Lip1, the impulse frequency increased in a concentration-dependent manner. The increase by Cp-Lip1 was seen more evidently at lower concentration ranges of stimulus odorants. These results strongly suggest that Cp-Lip1 broadens the sensitivity of the olfactory cells toward the lower concentration of odorants, by which animals can detect very low concentration of odorants.


Assuntos
Lipocalinas/metabolismo , Odorantes/análise , Bulbo Olfatório/metabolismo , Mucosa Olfatória/metabolismo , Animais , Relação Dose-Resposta a Droga , Eletrodos , Feminino , Lipocalinas/genética , Masculino , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salamandridae , Análise de Célula Única
15.
Nat Commun ; 10(1): 674, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787297

RESUMO

Direct cardiac reprogramming from fibroblasts can be a promising approach for disease modeling, drug screening, and cardiac regeneration in pediatric and adult patients. However, postnatal and adult fibroblasts are less efficient for reprogramming compared with embryonic fibroblasts, and barriers to cardiac reprogramming associated with aging remain undetermined. In this study, we screened 8400 chemical compounds and found that diclofenac sodium (diclofenac), a non-steroidal anti-inflammatory drug, greatly enhanced cardiac reprogramming in combination with Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2. Intriguingly, diclofenac promoted cardiac reprogramming in mouse postnatal and adult tail-tip fibroblasts (TTFs), but not in mouse embryonic fibroblasts (MEFs). Mechanistically, diclofenac enhanced cardiac reprogramming by inhibiting cyclooxygenase-2, prostaglandin E2/prostaglandin E receptor 4, cyclic AMP/protein kinase A, and interleukin 1ß signaling and by silencing inflammatory and fibroblast programs, which were activated in postnatal and adult TTFs. Thus, anti-inflammation represents a new target for cardiac reprogramming associated with aging.


Assuntos
Reprogramação Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Receptores de Prostaglandina E Subtipo EP4/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/efeitos dos fármacos , AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/efeitos dos fármacos , Diclofenaco/farmacologia , Dinoprostona , Fibroblastos , Fator de Transcrição GATA4/metabolismo , Humanos , Inflamação , Interleucina-1beta , Fatores de Transcrição MEF2/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas com Domínio T/metabolismo
16.
Cell Stem Cell ; 22(1): 91-103.e5, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29276141

RESUMO

Direct cardiac reprogramming holds great promise for regenerative medicine. We previously generated directly reprogrammed induced cardiomyocyte-like cells (iCMs) by overexpression of Gata4, Mef2c, and Tbx5 (GMT) using retrovirus vectors. However, integrating vectors pose risks associated with insertional mutagenesis and disruption of gene expression and are inefficient. Here, we show that Sendai virus (SeV) vectors expressing cardiac reprogramming factors efficiently and rapidly reprogram both mouse and human fibroblasts into integration-free iCMs via robust transgene expression. SeV-GMT generated 100-fold more beating iCMs than retroviral-GMT and shortened the duration to induce beating cells from 30 to 10 days in mouse fibroblasts. In vivo lineage tracing revealed that the gene transfer of SeV-GMT was more efficient than retroviral-GMT in reprogramming resident cardiac fibroblasts into iCMs in mouse infarct hearts. Moreover, SeV-GMT improved cardiac function and reduced fibrosis after myocardial infarction. Thus, efficient, non-integrating SeV vectors may serve as a powerful system for cardiac regeneration.


Assuntos
Reprogramação Celular , Vetores Genéticos/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Vírus Sendai/genética , Potenciais de Ação , Animais , Animais Recém-Nascidos , Linhagem da Célula , Proliferação de Células , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Transcrição/metabolismo , Transgenes , Vírion/metabolismo
17.
Int J Mol Sci ; 18(8)2017 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-28825623

RESUMO

Direct reprogramming is a promising approach in regenerative medicine. Overexpression of the cardiac transcription factors Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Hand2 (GHMT) directly reprogram fibroblasts into cardiomyocyte-like cells (iCMs). However, the critical timing of transgene expression and the molecular mechanisms for cardiac reprogramming remain unclear. The conventional doxycycline (Dox)-inducible temporal transgene expression systems require simultaneous transduction of two vectors (pLVX-rtTA/pLVX-cDNA) harboring the reverse tetracycline transactivator (rtTA) and the tetracycline response element (TRE)-controlled transgene, respectively, leading to inefficient cardiac reprogramming. Herein, we developed a single-construct-based polycistronic Dox-inducible vector (pDox-cDNA) expressing both the rtTA and TRE-controlled transgenes. Fluorescence activated cell sorting (FACS) analyses, quantitative RT-PCR, and immunostaining revealed that pDox-GMT increased cardiac reprogramming three-fold compared to the conventional pLVX-rtTA/pLVX-GMT. After four weeks, pDox-GMT-induced iCMs expressed multiple cardiac genes, produced sarcomeric structures, and beat spontaneously. Co-transduction of pDox-Hand2 with retroviral pMX-GMT increased cardiac reprogramming three-fold compared to pMX-GMT alone. Temporal Dox administration revealed that Hand2 transgene expression is critical during the first two weeks of cardiac reprogramming. Microarray analyses demonstrated that Hand2 represses cell cycle-promoting genes and enhances cardiac reprogramming. Thus, we have developed an efficient temporal transgene expression system, which could be invaluable in the study of cardiac reprogramming.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , Doxiciclina/farmacologia , Miócitos Cardíacos/metabolismo , Tetraciclina/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/efeitos dos fármacos , Doxiciclina/química , Fibroblastos/citologia , Fibroblastos/metabolismo , Fator de Transcrição GATA4/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Vetores Genéticos/genética , Humanos , Fatores de Transcrição MEF2/genética , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Medicina Regenerativa/tendências , Proteínas com Domínio T/genética , Transativadores/genética , Transdução Genética , Transgenes/efeitos dos fármacos
19.
Inflamm Regen ; 36: 23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29259696

RESUMO

Cardiovascular disease remains a major cause of death for which current therapeutic regimens are limited. Following myocardial injury, endogenous cardiac fibroblasts, which account for more than half of the cells in the heart, proliferate and synthesize extracellular matrix, leading to fibrosis and heart failure. As terminally differentiated cardiomyocytes have little regenerative capacity following injury, the development of cardiac regenerative therapy is highly desired. Embryonic stem and induced pluripotent stem (iPS) cells are promising tools for regenerative medicine. However, these stem cells demonstrate variable cardiac differentiation efficiency and tumorigenicity, which must be resolved prior to clinical regenerative applications. Until the last decade, an established theory was that cardiomyocytes could only be produced from fibroblasts through iPS cell generation. In 2010, we first reported cardiac differentiation from fibroblasts by direct reprogramming, and we demonstrated that various cardiac reprogramming pathways exist. This review summarizes the latest trends in stem cell and regenerative research regarding iPS cells, a partial reprogramming strategy, and direct cardiac reprogramming. We also examine the many recent advances in direct cardiac reprogramming and explore the suitable utilization of these methods for regenerative medicine in the cardiovascular field.

20.
Stem Cell Reports ; 5(6): 1128-1142, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26626177

RESUMO

Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming.


Assuntos
Técnicas de Reprogramação Celular/métodos , Reprogramação Celular , Fatores de Crescimento de Fibroblastos/metabolismo , Fibroblastos/citologia , Miócitos Cardíacos/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Cultivadas , Fibroblastos/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...